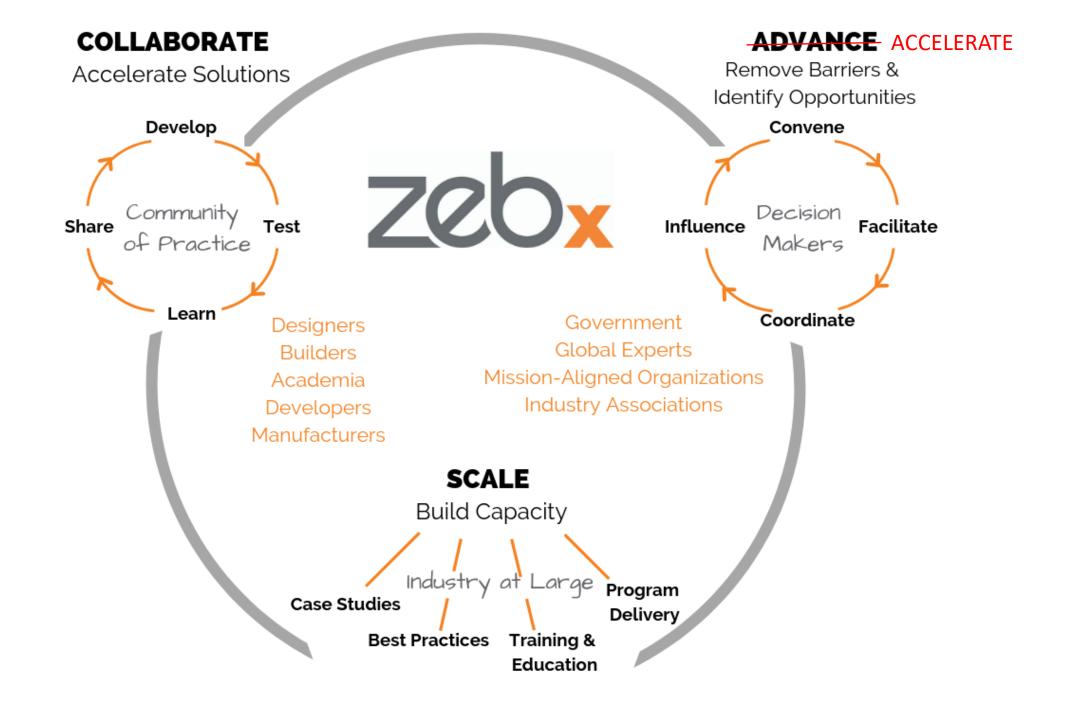
Deep Emissions Retrofit Dialogue


BC Hydro Power smart

Ready to Roll: Simple Solutions for Going Electric

Thu, Feb 17, 2022 10am - 12pm PST Free webinar I zebx.org

Building to Electrification Coalition We are a broad coalition working together to electrify buildings in British Columbia in order to reduce their climate impacts and reliance on fossil fuels.

B2E Relating to Execution Constition	Events	Resources	About	ZEBx	Contact	Get Involved
B. Basan I						

Building to Electrification Coalition

B2E is a BC-based member-driven coalition working towards a Vision that by 2030, all new and most replacement space heating and domestic hot water systems in BC's buildings will be highefficiency and low-carbon with electric systems being widely used across all market sectors.

Our Mission

We are a broad coalition working together to electrify buildings in British Columbia in order to reduce their climate impacts and reliance on fossil fuels.

Welcome to the BC Green Building Calendar.

Here you will find all of the latest events and training related to green building subject matter, including: emissions, energy efficiency, resiliency, high-performance design, and more.

If you would like to submit an event or for more details on submission guidelines, see the bottom of this page.

Filters

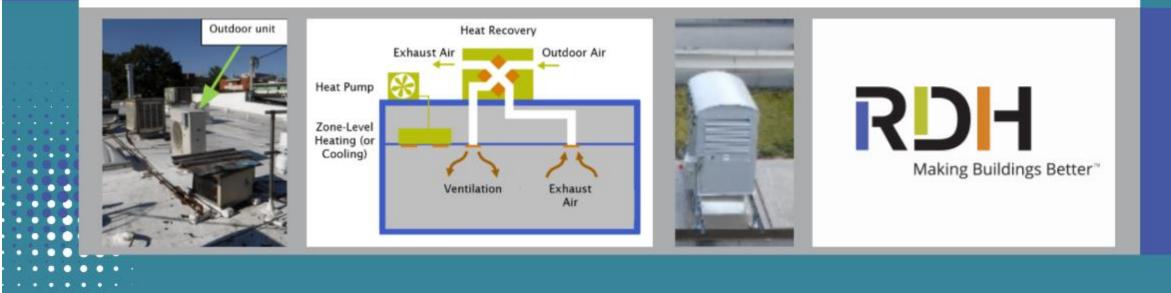
February 2022

Friday

12:00 - 1:00pm

Webinar	Presented by: ZEBx		Mon			Thu
Feb		30		1	2	3
reb	700-	6	7	8	9	10
17			14	15	16	17 •
Thursday	Deep Emissions Retrofit Dialogue - Ready to Roll: Simple	20	21	22	23	24
10:00am - 12:00pm	Solutions for Going Electric	27	28			
		6				
Webinar	Presented by: ZEBx		I			
Trebillar	Tresented by LEbx	I	o sui			nts foi tion:
Feb	700					
25				1 oui	r con	nmur

ZEBx Decarb Lunch - Be Prepared! The BC Energy Step Code Capacity Study.


۲	·	Fek	orua	ary	20	22
	Mon 31		Wed 2	Thu 3	Fri 4	Sat 5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28				4	5
6						12

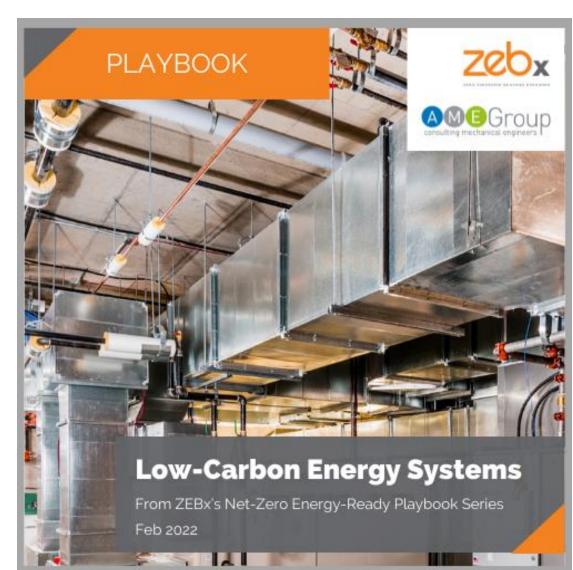
for your

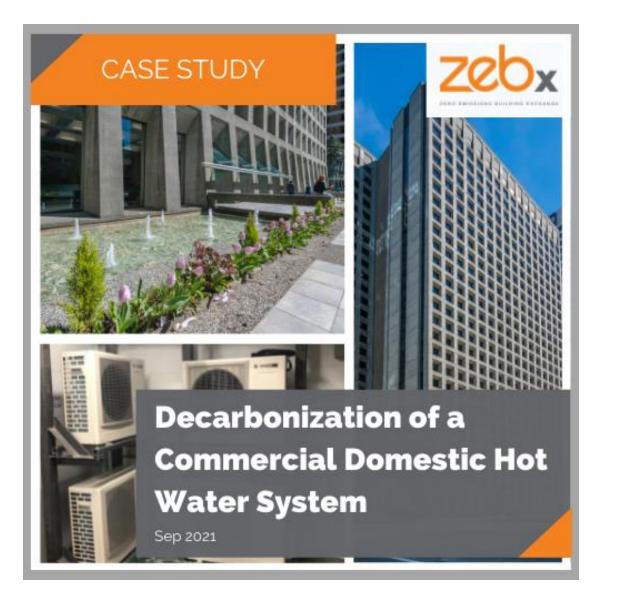
Decarbonization Through HVAC Retrofits

Case Study with RDH Building Science

Residential Hot Water Electrification

Case Study with City Green Solutions




Podcast The Road to 2030 -Building Electrification in BC

Recorded at the Dec 8, 2021 event

Tell us about yourself!

Three-part anonymous poll

The Heating, Refrigeration and Air Conditioning Institute of Canada

×

"Simplicity is the ultimate sophistication."

-Leonardo Da Vinci

cleanBC our nature. our power. our future.

CLIMATE 2050 Roadmap

Buildings

A Pathway to Zero Emissions and Resilient Buildings

BC Hydro's Electrification Plan A clean future powered by water

SEPTEMBER 2021

The industry-led United Nations-convened Net-Zero Banking Alliance

BC Hydro Power smart

Building to Electrification

B2E

About HRAI-Canada

***** Established in 1968

>1,200 member corporations

- 90 Manufacturers; 60 Wholesalers/Distributors; 900 Contractors; 150 Associates
- 22 staff, 10 instructors, 5 regional offices, 15 chapters

Services to Members and Industry

- Industry Advocacy and Government Relations "the voice of the industry"
- Industry Training (technical design, business management)
- Communications (magazine, e-newsletter, webinars)
- Trade Show Canadian Mechanicals and Plumbing Exposition (CMPX 2022)
- Environmental Stewardship (Refrigerant Management Canada, Thermostat Recovery Program)
- Conservation/Demand Management Program Administration (almost a million rebates in 10 years)

The Industry We Represent

- Heating and cooling of buildings (by various methods)
- Ventilation and indoor air quality (IAQ)
- Refrigeration processes
 - Industry
 - Grocery stores
 - Institutions (hospitals, schools)
 - Ice rinks
 - Various specialty applications
- Building control systems
- > \$12 billion in activity per year and tens of thousands of jobs across the country

HVACR Industry *Opportunities*

The energy transition creates opportunities for the HVACR Sector:

- Increased demand for more efficient HVAC products
- Transition to newer technologies an opportunity for those who adapt
- Smart building controls present benefits beyond efficiency
- Innovations and technology refinement will offer greater benefits
- Not just products but "building as a system" requires skills and expertise
- The next generation meaningful progress on climate change while earning a living

HVACR Industry Challenges

The energy transition will present challenges for the HVACR Sector:

- Industry needs time and resources to adapt
 - Product innovation to accommodate fuel switching & increasing efficiency standards
 - Growing sophistication of codes and building systems
 - Growing need for skilled labour
 - Clear and consistent signals
- New technologies disrupting the industry in the short term
- New refrigerants creating emerging issues
- Need for standardization of protocols
- Marketing issues for the industry need to educate market

A Coordinated Approach

As part of the Building 2 Electrification Leadership Coalition, HRAI:

- Represents and advocates for industry
- Educates government and stakeholders
- Leads on priority issues:
 - Climate Action Policies
 - Workforce Development
 - Emerging technologies

Thank you!

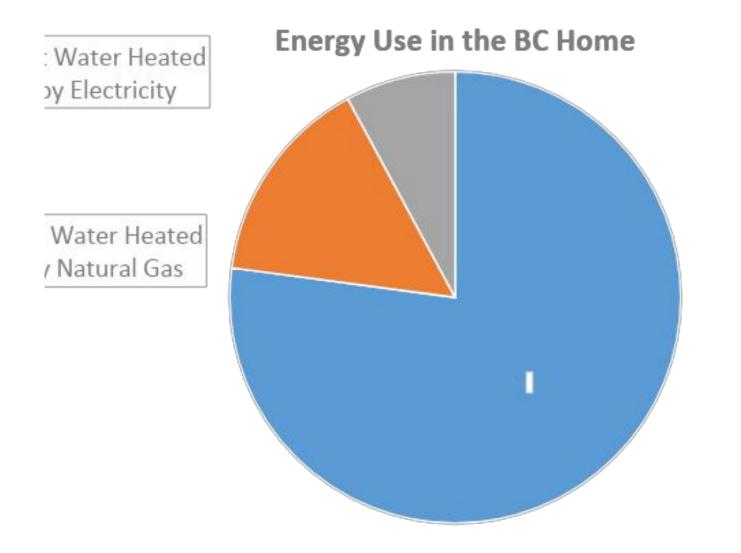
To connect or for more information:

Victoria Cross

victoria@twowestgroup.com

Heating, Refrigeration, and Air Conditioning Institute of Canada

hraimail@hrai.ca Tel: 905-602-4700 Toll-free: 1-800-267-2231 READY TO ROLL: RESIDENTIAL RETROFIT FUEL SWITCHING (Part 9 Homes)



City Greens

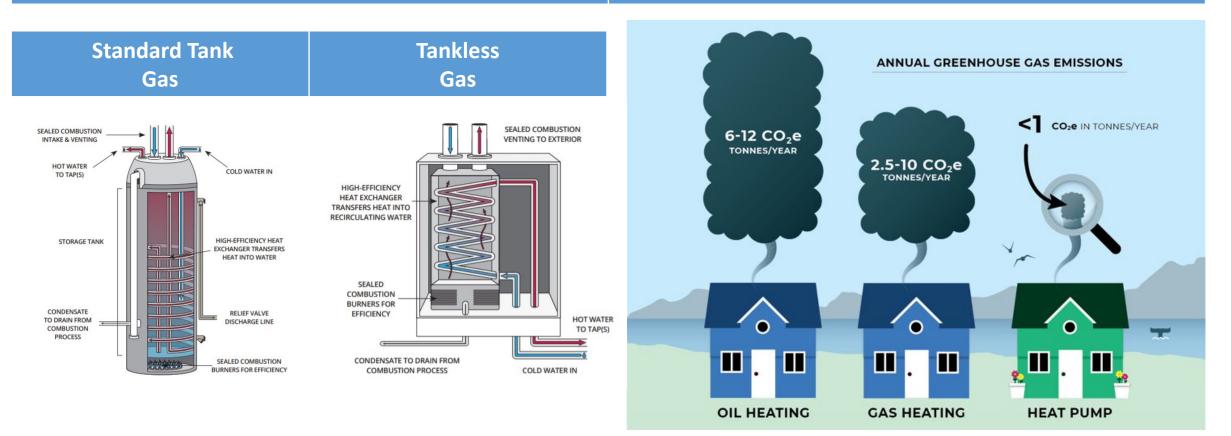
The Case For Residential Hot Water Electrification

Residential Hot Water Electrification

- WATER HEATING = ~23% of total household energy use
- 66% of BC residential water heating is fueled by natural gas
- Natural gas hot water heating = a significant contributor to residential GHG emissions

Residential Hot Water Electrification GHG EMISSIONS REDUCTIONS

Single Family Residential hot water electrification can deliver, <u>on average</u>, approximately


1.04 Tonnes of GHG Emission Reductions Per Home Per Year

Residential Hot Water Electrification GHG EMISSIONS

Gas Hot Water Heating = Over 1 Tonne GHG EMISSIONS Per Home/Year

Electric Home (All Energy)= Under 1 Tonne GHG Emissions Per Home/Year

Residential Hot Water Electrification COSTS

But isn't it cheaper to heat hot water with GAS?

Residential Hot Water Electrification PURCHASING COSTS

Electric Options Have Lower Purchasing Costs

Comparison of Gas VS. Electric Water Heating Systems							
		Gas	Electric				
System	Standard Tank	Tankless	Standard Tank	Premium Tank	Heat Pump Hot Water System		
Typical Lifespan Average	7 to 10 Years	20 years	7 to 10 Years	25 years	13 years		
Comparative GHG Emissions	very high	very high	very low	very low	very low		
Upfront Purchase Costs	\$1700	\$4000	\$900	\$1300	\$3000-\$6,00 0		

Residential Hot Water Electrification REGULAR GAS VS ELECTIC

Lifecycle costs include: <u>Purchase price + operational costs/energy bills + maintenance costs</u>

	Comparison of Regular Gas vs. Electric Water Heating Systems					
	Attributes	Regular Na	atural Gas	Electric		
	System	Standard	Tankless	Standard	Premium	Heat Pump Hot
<u>Comparable to</u>		Gas Tank	System	Tank	Tank	Water System
Lower	Annual Operation Costs	\$341	\$230	\$499	\$488	<mark>\$126 - \$191</mark>
	Source: FortisBC Home					
Lifecycle Costs	Energy Calculator					
Electric Ontions	Annual Maintenance Costs	None	\$100	None	None	\$100 Annually
Electric Options			Annually			
	25-year Cost Projection	7 yr. Tank	\$13,250	7 yr. Tank	\$13,500	Mid-Efficiency
	Results	\$14,596		\$15,689		(UEF2.3):
	(Includes purchase price,					\$13,044
	operational costs,	10 yr. Tank		10 yr. Tank		
	maintenance fees. Does not	\$12,775		\$14,725		High-Efficiency
	include rebates)					(UEF3.5):
						\$11,419

Residential Hot Water Electrification ELECTRIC VS 100% RENEWABLE GAS

Gas Water Heating Systems (Using 100% Renewable Natural Gas) vs. Electric Water Heating Systems

Lower Life-Cycle Cost When Heating with Electricity

	100% Renewable Na		Electric			
System	Standard Gas Tank	Tankless System	Standard Tank	Premium Tank	Heat Pump Hot Water System	
Annual Operation Costs Source: FortisBC Home Energy Calculator	\$516	\$348	\$499	\$488	\$126 - \$191	
25-Year Cost Projection Results* (Includes purchase costs, operation and maintenance costs. Does not include rebates)	7 yr. Tank \$18,971 10 yr. Tank	\$16,200	7 yr. Tank \$15,689 10 yr. Tank	\$13,500	Mid-Efficiency (UEF2.3): \$13,044	
	\$17,150		\$14,725		High-Efficiency (UEF3.5): \$11,419	

Residential Hot Water Electrification READY TO ROLL?

- IN SUMMARY SWITCHING FROM GAS TO ELECTRIC HOT WATER
- **1. Lower Upfront Purchase Cost Electric Options**
- 2. Electric Systems have Comparable or Lower Lifecycle Costs
- 3. Electric Systems = GHG Reductions, 1 Tonne + Per Home/Year.
- 4. Electric Systems Options are Ready to Roll
 - Supply and Industry Capacity to Install Standard and Premium Tanks

Residential Hot Water Electrification RELATIVELY READY TO ROLL

Low Consumer and Industry Awareness

- GHG reduction potential of electric DHW
- Comparable or lower cost options

Standard Industry/Consumer Practices

- Industry used to replacing like-with-like at point of failure
- Homeowner needs to plan ahead

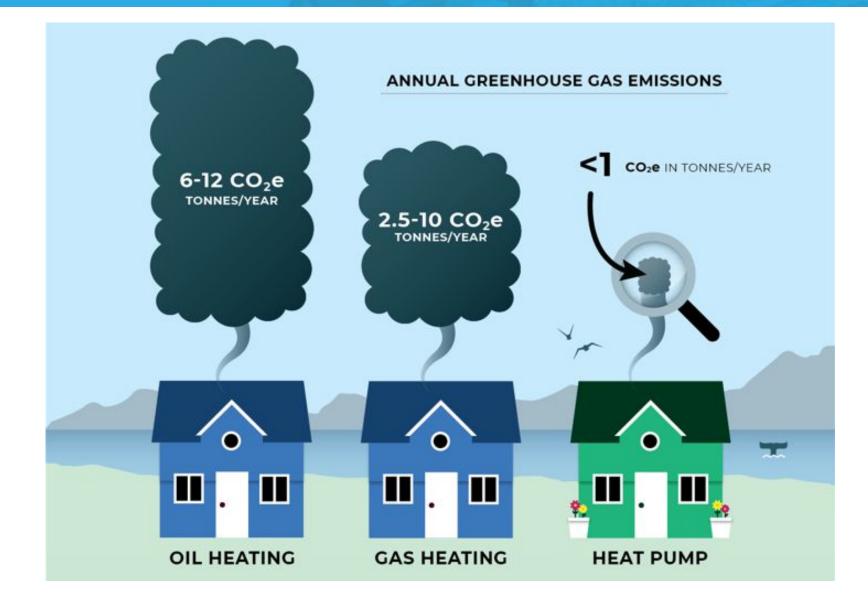
Challenges with Combination Boiler Systems

• It's more than a hot water tank = full system change

Few Financial Incentives

• Few rebate options for electric DHW equipment and electrical service upgrades (only for Heat Pump Hot Water Systems)

The Case For Residential Space Heating Electrification


Residential Space Heating Electrification KEY FINDINGS

"You can find a heat pump to work in pretty much any home. But like any other heating system, the more insulated your home is, the more efficient your heat pump will be."

(BC Hydro PowerSmart – Heat Pump Myth Busters)

Residential Space Heating Electrification GHG EMISSION REDUCTIONS

Myth #1: Heat Pumps Are Too Expensive

Heating System Comparison High-Efficiency Gas Furna		Cold Climate Central Ducted Heat Pump
Equipment and Installation Cost	Average Range: \$6,000 to \$18,000 Average: \$7,000	Average Range: \$12,000 - \$27,000 Average: \$18,000
Rebates Available	Up to \$1,000	Up To \$11,000 + municipal top ups
Cost After Rebates	Average: \$6,000 Range: \$5,000 - \$17,000	Average: \$7,000 Range: \$1,000 - \$16,000
Air Conditioning	No	Yes
Average After Upgrade Greenhouse Gas Emissions Range Per Year	2.5 to 6 Tonnes	Under 1 Tonne

Myth #2: Heat Pumps Are Expensive to Operate

Heat pumps can have comparable to lower operating costs to natural gas homes

- Other Home Upgrades: Upgrading insulation, windows, air sealing = lower energy bills.
- Purchase Higher Efficiency Heat Pump: The more efficient the heat pump the lower the energy bills. Cold climate heat pumps for all locations in BC?
- Quality Installation: A heat pump sized for the home & well-installed will work more efficiently and cost-effectively.

Residential Space Heating Electrification HEAT PUMP VS 100% RENEWABLE GAS

	Capital Cost (including		Annual Maintena nce Cost	House	Annual Operation Cost	. ,		Cap Co (includin	st	Annual Maintena nce Cost	Insulation Level of House	Annual Operation Cost	Overall Costs projected over a 15-year timespan (Capital + Maintenance + Operation)
	Low	\$12,000	\$100	Well Average Poor	\$647 \$932 \$1,789	\$23,203 \$27,486 \$40,336		Low	\$6,000		Well Average	\$981 \$1,395	\$22,219 \$28,425
Central Cold Climate Heat Pump (COP 2.9)	Average	\$18,000	\$100	Well Average Poor	\$647 \$932 \$1,789	\$29,203 \$33,486 \$46,336	Natural Gas Furnace (AFUE 95) RENEWABLE NATURAL GAS	Average	\$7,000	\$100	Poor Well Average Poor	\$2,636 \$981 \$1,395 \$2,636	\$47,041 \$23,219 \$29,425 \$48,041
	High	\$27,000	\$100	Well Average Poor	\$647 \$932 \$1,789	\$38,203 \$42,486 \$55,336		High	\$18,000	\$100	Well Average Poor	\$981 \$1,395 \$2,636	\$34,219 \$40,425 \$59,041
		Capital Costs		C	Operation Costs Lower			Years Comp (Be	er 15 - Costs arable fore ates)				
		Higher					eat Pump Range (\$ NG Furnace Range					С	ity Gree r

Residential Space Heating Electrification READY TO ROLL?

HEAT PUMPS HAVE (COMPARED TO GAS FURNACES with 100% RNG)

- On average, comparable to lower purchase costs (AFTER REBATES)
- Lower operating costs (compared to furnace with 100% RNG)
- Comparable lifecycle costs (before rebates)
- Lower lifecycle costs (after rebates)

Residential Space Heating Electrification RELATIVELY READY TO ROLL

Speed Bumps

- Consumer awareness
- Need for complementary building envelope retrofits
- Industry willingness to transition to fuel switching
- Industry training and capacity for <u>scaling</u> and <u>quality installation</u>
- Addressing electrical capacity issues at household level
- Affordability (incentives required for cost parity and mass adoption)

WHAT IS READY TO ROLL?

1. MOST HOMES CAN ELECTRIFY WATER HEATING

- Lower purchase costs options (premium electric tanks)
- Lower lifecycle cost options (premium electric tanks and heat pump hot water)
- Heat pump water heaters are higher purchase price and lower lifecycle cost (compared to regular gas and renewable gas)

2. MOST HOMES CAN ELECTRIFY SPACE HEATING

- On average, comparable to lower purchase costs (AFTER REBATES)
- Lower operating costs (compared to furnace with 100% RNG)
- Comparable lifecycle costs (before rebates)
- Lower lifecycle costs (after rebates)

City Green

peter.sundberg@citygreen.ca

February 17, 2022

Electrification Opportunities for MURBs

John Foster & Sofia Marmolejo, FRESCo

www.frescoltd.com | info@frescoltd.com | 1-866-598-1213

Who are we?

Sofia Marmolejo

Energy Engineer smarmolejo@frescoltd.com

John Foster

Energy Engineer jfoster@frescoltd.com

Ready to Roll Opportunities in MURBs

- Central make-up air
- Central domestic hot water heating
- In-suite heat pumps

Ready to roll = no electrical service upgrade

*Available capacity varies by building

1) Plan Ahead

2) Tie into End-of-Life Replacements

www.frescoltd.com | info@frescoltd.com | 1-866-598-1213

Central Make Up Air Heat Pumps

 REDUCE LOAD FIRST: Ventilation controls Central heat recovery 	Estimated Cost <\$1k per suite
 MAIN BENEFITS: No disruption to suites Add some cooling to the building Strong economics 	 MAIN CONSIDERATIONS: Added equipment weight to the roof Fuel for auxiliary heat

**Many older MURBs (prior to ~1980) don't have central mechanical ventilation*

Central Make Up Air Gas to Heat Pump

Central Domestic Hot Water Gas Boiler to Heat Pumps

 REDUCE LOAD FIRST: Low flow shower heads and sink aerators Under-tub heat recovery 	Estimate Cost \$2-3k per suite		
 MAIN BENEFITS: No disruption to residents 	 MAIN CONSIDERATIONS: Space for outdoor units Space & added weight for additional storage tanks 		

*There are also solutions that allow in-suite domestic hot water heat pumps where space and configurations allow

Central Domestic Hot Water

In-Suite Heat Pumps

1. Electric baseboard heaters to heat pumps

- 1. Frees up kW capacity for use elsewhere
- 2. Reduce electric bills & build installer base

2. Central hydronic heating to heat pumps

- 1. Biggest opportunity to reduce emissions
- 2. Lowrises easy placement of mini-splits
- 3. Highrises packaged in-suite or balcony mini-splits

3. Air Conditioning

1. Replace existing AC wall units in Okanagan

In-Suite Heat Pumps

 REDUCE LOAD FIRST: Air sealing Enclosure Heat recovery ventilation 	Estimated Costs \$4-10k per suite
 MAIN BENEFITS: No resident displacement Added cooling & air filtration Better temperature control Avoid/reduce maintenance cost for hydronic system 	 MAIN CONSIDERATIONS: Envelope penetrations Locate outdoor units Condensate & defrost drainage Heat distribution to bedrooms

Mini-Split Heat Pumps Augmenting high-temp hydronic

AC Added	Yes	
Transferred cost to suite meter	Partially	
\$ / suite est.	\$5-11k	
GHG reduction	42% (of heating)	

Mini-Split Conversion from hydronic – Low-rise

AC Added	Yes
Transferred	Entire
cost to	Space Heat
tenant meter	Cost
\$ / suite est.	\$5-11k
GHG	95%
reduction	(of heating)

All-in-One In-suite Packaged Air Source Heat Pumps

AC Added	Yes
Transferred	Entire
cost to	Space Heat
suite meter	Cost
\$ / suite est.	\$6-10k
GHG	95%
reduction	(of heating)

MURB Specific Considerations

- Electrical infrastructure multiple small meters without whole building demand metering
- **Decarbonization plan** competing priorities for electrical capacity
- Archetype Easier to retrofit low-rises vs high-rises
- **Rental buildings**: limitations by the *Rental Tenancy Act*
- **Strata buildings**: multiple owners, difficult decision making

Questions?

Thank You!

1-866-598-1213

info@frescoltd.com

www.frescoltd.com

FEBRUARY 17, 2022

Solutions for Small Commercial Buildings

Christy Love, P.Eng., CPHC, Principal

© RDH Building Science, Inc. 2022

All rights reserved. No part of this presentation may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopy, recording, or other without prior written permission.

For permissions to use this content, email onlinelearning@rdh.com.

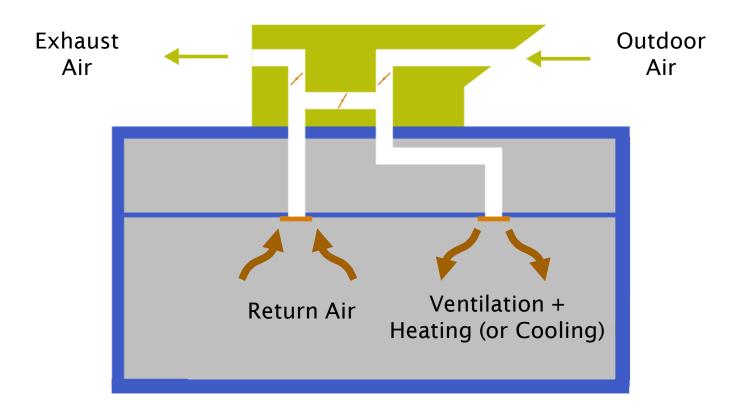
Disclaimer

This material is intended to be used for reference, continuing education, and training purposes only. Neither RDH Building Science, Inc., nor the persons presenting the material, make any representation or warranty of any kind, express or implied, with regard to whether the material is appropriate for, or applies to, any specific project, circumstance or condition. Applicable and current laws, codes, regulations, standards and policies, as well as project and sitespecific conditions, procedures and circumstances must always be considered when applying the information, details, techniques, practices and procedures described in this material.

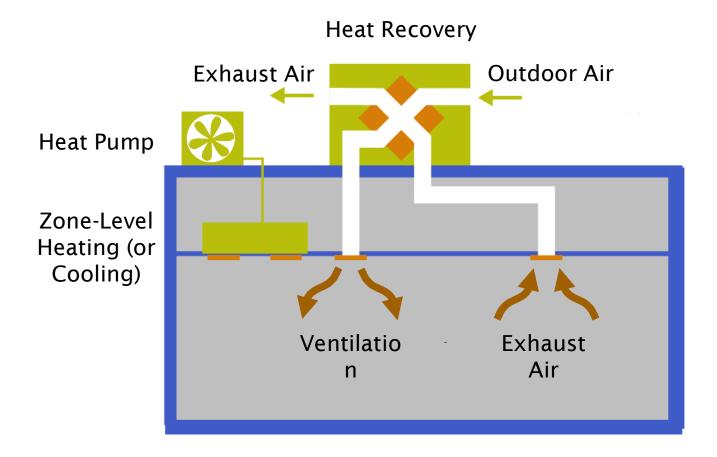
RDH Building Science – Who we are

- People with a passion for making buildings better
- We do this by providing services that include:
 - Climate resilience evaluation and planning
 - ightarrow Energy and carbon analysis
 - Architectural and engineering design of renewals
 - \rightarrow Project and construction management
 - \rightarrow Depreciation Reports
 - Building Enclosure Condition Assessments
 - \rightarrow Warranty Reviews
 - \rightarrow Research, testing, investigation

HVAC Conversion Pilot for Small Commercial Buildings


\rightarrow Small commercial (< 25,000 ft²)

- \rightarrow Includes small office, retail, schools, restaurants, small assembly
- $\rightarrow\,$ Makes up approx. half of the commercial building floor area in the Pacific Northwest.
- \rightarrow Smaller HVAC systems; typically not engineered


Typical Existing System

Conventional Packaged Rooftop Unit

Pilot Project Conversion System

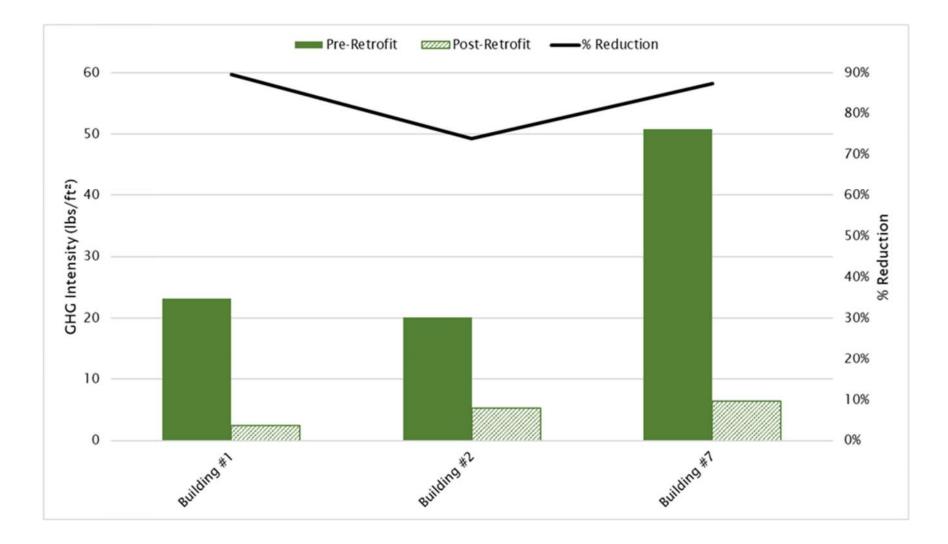
Dedicated Outdoor Air System

The Buildings

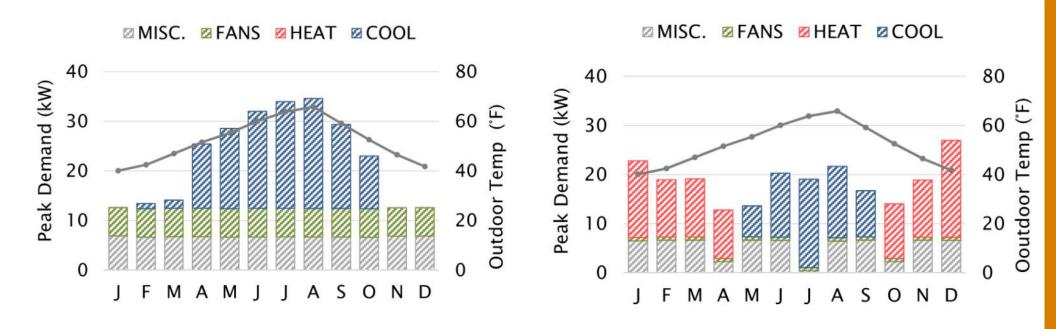
VERDE COCINA

Results: Physical Impacts + Downsizing

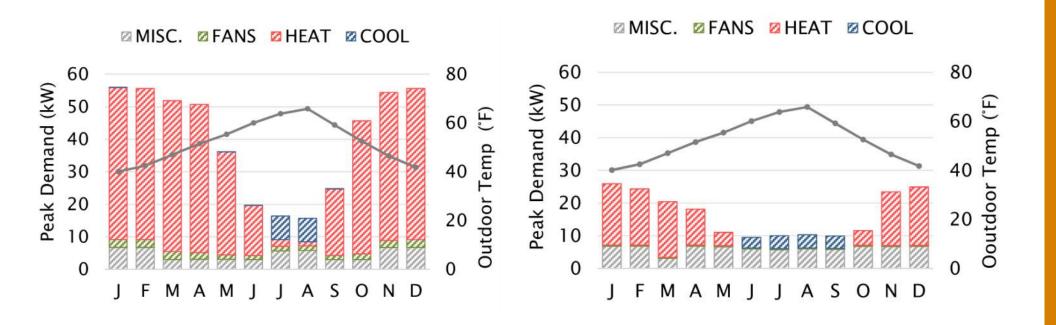
Results: Physical Impacts + Downsizing


Results - Energy Savings

#	Building Location and Type	Pre-Retrofit Total Energy Use (kWh/m²)	Post-Retrofit Total Energy Use (kWh/m²)	Total Energy Savings (%)	Total HVAC Energy Savings (%)
7	Seattle WA Office W/Assembly	481	152	68%	89%
1	Portland OR Office	178	60	66%	75%
8	Darby MT Dormitory	324	162	50%	77%
2	Corvallis OR Office*	183	99	46%	77%
6	Seattle WA Office	162	94	42%	70%
4	Libby MT Office W/Garage	322	221	32%	48%
5	Portland OR Restaurant	2,916	2,212	24%	77%
3	Corvallis OR Restaurant	4,779	4,264	11%	51%


Results - Total Emissions Savings

#	Building Location and Type	Emissions (kgCO ₂	% Reduction	
		Pre-Retrofit	Post-Retrofit	
1	Portland OR Office	23	2	90%
7	Seattle WA Office W/Assembly	51	6	87%
2	Corvallis OR Office*	20	5	74%
8	Darby MT Dormitory	13	7	50%
6	Seattle WA Office	7	4	42%
5	Portland OR Restaurant	463	310	33%
4	Libby MT Office W/Garage	13	9	32%
3	Corvallis OR Restaurant	727	623	14%


Results - Total Emissions Savings

Results: Peak Electricity Demand Savings

Results: Peak Electricity Demand Savings

Key Takeaways

- Significant savings potential by rethinking end of life equipment replacement
 - \rightarrow Full electrification
 - \rightarrow 50 85% HVAC energy savings
 - ightarrow ~40 60% whole-building energy savings
 - \rightarrow 30 40% cooling demand reduction
- ightarrow Savings could have been higher

Conversion Pilot Lessons Learned

- \rightarrow Several pilots initially specified old equipment capacity
- Relied heavily on design assistance from heat pump equipment suppliers
- \rightarrow Watch zoning (\$\$\$)

Minimum Performance Spec

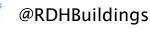
Very High Efficiency Dedicated Outside Air System Design Specifications and Guidelines

He	Heat Recovery Ventilation – Minimum Performance & Features / Capabilities			
1.	Minimum sensible recovery efficiency: Passive House Certified, or 85% Sensible Effectiveness at 50% of nominal full air flow ¹			
2.	Minimum fan efficacy: 2.0 cfm/Watt (0.5 W/cfm) at 0.5" w.g. at 50% of nominal full air flow ²			
3.	Control capabilities: DCV, by zone; control based on time, occupancy, CO ₂ , pressure			
4.	Economizing (heat recovery bypass)			
5.	Adaptive defrost, no recirculation allowed			
6.	Cross-flow leakage: less than 3% ³			
7.	BACNet, Modbus interface capability			
8.	Outdoor-rated; outdoor / roof mounting capability (all climates)			
9.	Dedicated ducting / zoning (separate from heating / cooling air flows, separately controlled)			

https://neea.org/our-work/very-high-efficiency-doasrequirements

Minimum Performance Spec

He	Heating/Cooling Systems - Minimum Performance & Features / Documentation				
1.	Heating ⁴ (Ducted/Unducted): HSPF 9.5 (≤ 65 kBtu/hr); COP @ 47 °F 3.2, COP @ 17 °F 2.2 (> 65 kBtu/hr)				
2.	Cooling ⁴ (Ducted/Unducted): EER 11.0				
3.	No simultaneous heating/cooling ("heat recovery") w/o an analysis showing cost-effective incremental savings and a zoning plan that will effectively utilize this feature (e.g., core/perimeter)				
4.	System proposals must include, at a minimum: outdoor unit spec, indoor unit(s) spec, controls spec & sequence of operations, dedicated ducting, zoning; proposed system drawings				
Cri	tical System Design Guidelines				
1.	Complete separation of ventilation air from heating/cooling air, with each controlled separately (but coordinated) and zoned independently				
2.	HRV sizing: individual units specified to run at 40-60% of nominal rated full flow when meeting ASHRAE 62.1 ventilation rates (fully occupied, non-boosted); ducting sized for max flow				
3.	Heating/cooling sizing: no less than 600 sq ft/ton of system cooling capacity				
4.	For ducted systems: supply & return for each space served by 25 cfm or more of supply air (spaces without doors exempt)				
5.	Ventilation supply air delivered to one side of space, exhaust air extracted from opposite side				
6.	System commissioning, including ventilation system air flow verification ⁵				
7.	Duct-sealing and leakage testing as part of commissioning scope; ventilation duct insulation where required (in unconditioned spaces, to/from outdoors to HRV)				
8.	Modeling: TBD				


Discussion + Questions

clove@rdh.com

Learn more at rdh.com

RDH Building Science

Simple Solutions for Electrification

READY TO ROLL (Residential)

- Domestic hot water
- Space heating and cooling (heat pump)

READY TO ROLL (MURB)

- Central MUA heat pumps
- Central DHW heat pumps
- In-suite heat pumps

READY TO ROLL (Commercial) Dedicated outdoor air system (DOAS)

TECH DEMO SERIES

BC Hydro Power smart

Heat Pumps

The Lync Aegis CO2 Heat Pump

IN-PERSON WORKSHOP EVENT Feb 24, 2022 from 10am - 2pm PST BCIT Burnaby Campus

Decarb Lunch Series

zebx

BC Hydro Power smart

Be Prepared! The BC Energy Step Code Capacity Study

Fri Feb 25, 2022, from 12- 1pm PDT Free Webinar I zebx.org

Thank you!

Building to Electrification